1- Write first four terms of the A.P. when the first term a and the common difference are given as follows:
(i) a = 10, d = 10
(ii) a = -2, d = 0
Solutions:
(i) a = 10, d = 10
Let us consider, the Arithmetic Progression series be a1, a2, a3, a4, a5 …
a1 = a = 10
a2 = a1+d = 10+10 = 20
a3 = a2+d = 20+10 = 30
a4 = a3+d = 30+10 = 40
a5 = a4+d = 40+10 = 50
And so on…
Therefore, the A.P. series will be 10, 20, 30, 40, 50 …
And First four terms of this A.P. will be 10, 20, 30, and 40.
2- Which term of the A.P. 3, 8, 13, 18, … is 78?
Solutions:
Given the A.P. series as3, 8, 13, 18, …
First term, a = 3
Common difference, d = a2 − a1 = 8 − 3 = 5
Let the nth term of given A.P. be 78. Now as we know,
an = a+(n−1)d
Therefore,
78 = 3+(n −1)5
75 = (n−1)5
(n−1) = 15
n = 16
Hence, the 16th term of this A.P. is 78.
3- If the 3rd and the 9th terms of an A.P. are 4 and − 8 respectively. Which term of this A.P. is zero.
Solution:
Given that,
3rd term, a3 = 4
and 9th term, a9 = −8
We know that,
an = a+(n−1)d
Therefore,
a3 = a+(3−1)d
4 = a+2d ……………………………………… (i)
a9 = a+(9−1)d
−8 = a+8d ………………………………………………… (ii)
On subtracting equation (i) from (ii), we will get here,
−12 = 6d
d = −2
From equation (i), we can write,
4 = a+2(−2)
4 = a−4
a = 8
Let the nth term of this A.P. be zero.
an = a+(n−1)d
0 = 8+(n−1)(−2)
0 = 8−2n+2
2n = 10
n = 5
Hence, the 5th term of this A.P. is 0.
4- In an AP
(i) Given a = 5, d = 3, an = 50, find n and Sn.
(ii) Given a = 7, a13 = 35, find d and S13.
Solutions:
(i) Given that, a = 5, d = 3, an = 50
As we know, from the formula of the nth term in an AP,
an = a +(n −1)d,
Therefore, putting the given values, we get,
⇒ 50 = 5+(n -1)×3
⇒ 3(n -1) = 45
⇒ n -1 = 15
⇒ n = 16
Now, sum of n terms,
Sn = n/2 (a +an)
Sn = 16/2 (5 + 50) = 440
(ii) Given that, a = 7, a13 = 35
As we know, from the formula of the nth term in an AP,
an = a+(n−1)d,
Therefore, putting the given values, we get,
⇒ 35 = 7+(13-1)d
⇒ 12d = 28
⇒ d = 28/12 = 2.33
Now, Sn = n/2 (a+an)
S13 = 13/2 (7+35) = 27
5- The houses of a row are numbered consecutively from 1 to 49. Show that there is a value of x such that the sum of the numbers of the houses preceding the house numbered x is equal to the sum of numbers of the houses following it. Find this value of x. [Hint :Sx – 1 = S49 – Sx]
Solution:
Given,
Row houses are numbers from 1,2,3,4,5…….49.
Thus we can see the houses numbered in a row are in the form of AP.
So,
First-term, a = 1
The Common difference, d=1
Let us say the number of xth houses can be represented as;
Sum of nth term of AP = n/2[2a+(n-1)d]
Sum of number of houses beyond x house = Sx-1
= (x-1)/2[2(1)+(x-1-1)1]
= (x-1)/2 [2+x-2]
= x(x-1)/2 ………………………………………(i)
By the given condition, we can write,
S49 – Sx = {49/2[2(1)+(49-1)1]}–{x/2[2(1)+(x-1)1]}
= 25(49) – x(x + 1)/2 ………………………………….(ii)
As per the given condition, eq.(i) and eq(ii) are equal to each other;
Therefore,
x(x-1)/2 = 25(49) – x(x+1)/2
x = ±35
As we know, the number of houses cannot be a negative number. Hence, the value of x is 35.